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Abstract: To guarantee stability of a model predictive control scheme it is essential to suitably
calculate the terminal region and the terminal penalty term. In this paper we propose an
approach to overcome this problem for the class of periodically time-varying systems. We
consider both systems with periodic linear dynamics as well as systems with periodic nonlinear
dynamics where the nonlinearities can be approximated with polytopic linear differential
inclusions. In both cases exploiting the periodicity of the system dynamics leads to linear matrix
inequality (LMI) conditions which can be used to calculate the terminal region and the terminal
penalty term. The LMI conditions are shown to be less conservative than existing approaches
applicable to the considered system class.
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1. INTRODUCTION

Systems with periodically time-varying dynamics are of
great importance for engineering applications. Examples of
processes that can be modeled through a periodic system
are sampled-data systems, satellites (Psiaki [2001]), rotors
of helicopters (Arcara et al. [2000]), or chemical processes.
Several methods to guarantee stability of linear periodic
systems have been developed in the past, see e.g. Bittanti
et al. [1984], Bolzern and Colaneri [1988], De Souza and
Trofino [2000], Farges et al. [2005, 2007]. A survey on the
analysis and control of periodic systems is given in Bit-
tanti and Colaneri [1999, 2009]. So far, only few model
predictive control (MPC) schemes have been developed
for periodically time-varying systems with linear dynam-
ics (in the following also referred to as linear periodic
systems), see e.g. De Nicolao [1994], Kim et al. [2000],
Kwon and Byun [1989], Böhm et al. [2009]. The goal of
this paper is to derive an MPC controller for the class of
state and input constrained discrete-time periodic systems.
We consider both systems with periodically time-varying
linear dynamics as well as systems with periodic nonlinear
dynamics, where the nonlinearities can be approximated
using polytopic linear differential inclusion (PLDI, Boyd
et al. [1994]) techniques.
The basic idea of model predictive control is as follows: By
solving online a finite horizon open-loop optimal control
problem based on current measurements of the system
state, an optimal input trajectory is obtained. The first
part of this trajectory is applied to the system and the
optimal control problem is solved again based on new
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measurements at the next sampling instant. Although
MPC often leads to good controller performance, closed-
loop stability is not naturally guaranteed. Several MPC
schemes use a terminal region and a terminal penalty term,
both calculated offline, to guarantee closed-loop stability,
see e.g. Chen and Allgöwer [1998], Mayne et al. [2000],
Fontes [2000]. However, the calculation of the terminal
region and the terminal penalty term is generally not a
trivial task, see e.g. Chen and Ballance [1999], Chen and
Allgöwer [1998], Böhm et al. [2008], Yu et al. [2009], and
one often has to exploit the structure of the system class
considered, as e.g. the periodicity of the system dynamics,
in order to obtain reasonable results. In principle, the
approaches presented in Lee et al. [2005] and Yu et al.
[2009] apply to periodic systems if the time-varying system
matrices are considered as extreme matrices of the required
PLDI formulation. However, they do not explicitly take
the periodic structure of the considered system class into
account and therefore the obtained LMI conditions suffer
from conservativeness, which might lead to non-desirable
small terminal regions or even infeasibility. To overcome
this problem in this paper we derive LMI conditions for
the calculation of periodically time-varying terminal re-
gions and terminal penalty terms using the periodicity of
the system dynamics. Furthermore, we extend the result
to the case of nonlinear periodic systems which can be
approximated using a PLDI formulation. It is shown that
the obtained conditions are less conservative than those
of Lee et al. [2005] and Yu et al. [2009], thus leading to
an improved size of the terminal region. The approach
presented in this paper uses the ideas of Böhm et al. [2009],
and Reble et al. [2009] for the nonlinear case respectively,
where a convex optimization problem based on LMIs is
solved repeatedly online to obtain a time-varying, stabi-



lizing feedback law for periodic systems.
The remainder of the paper is structured as follows: Sec-
tion 2 introduces the system class and the MPC control
problem considered. Section 3 derives the main result of
this paper, namely LMI conditions for the calculation of
periodically time-varying terminal regions and terminal
penalty terms for the class of linear periodic systems.
These results are extended in Section 4 to the nonlinear
case. Section 5 illustrates the results obtained via a simu-
lation example. The paper is concluded in Section 6 with
a brief summary.

2. PROBLEM SETUP

Consider the N -periodic discrete-time system

xk+1 = Akxk + Bkuk (1)

with initial condition x0 = x̄0. In (1) xk ∈ R
n is the system

state, uk ∈ R
m the control input, k ≥ 0 the time variable,

and Ak+N = Ak ∈ R
n×n, Bk+N = Bk ∈ R

n×m are linear
periodic matrices with the time period N .
The control problem is to stabilize the origin of system (1)
such that the state and input constraints defined by the
polyhedral set

C :=

{[

xk

uk

]

∈ R
n+m : cjxk + djuk ≤ 1, j = 1, · · · , p

}

(2)

are satisfied at every time instant k, where cj ∈ R
1×n

and dj ∈ R
1×m. Since MPC takes constraints explicitly

into account it is a suitable choice to achieve the given
control task. The basic idea of MPC is to repeatedly solve
online at each time instant k an open-loop optimal control
problem based on the measured system state xk. Here, we
consider the finite horizon quadratic cost function

J(xk, k,uk) :=

H−1
∑

i=0

xT
k+i|kQxk+i|k + uT

k+i|kRuk+i|k

+ xT
k+H|kPk+Hxk+H|k, (3)

with the positive definite weighting matrices Q ∈ R
n×n

and R ∈ R
m×m, and the positive definite terminal

penalty matrix Pk+H ∈ R
n×n. The sequence uk =

[uk|k, uk+1|k, · · · , uk+H−1|k] is the control input trajectory
and H denotes the prediction horizon. Thus, the optimal
control problem inherent to the MPC controller is

minimize
uk

J(xk, k,uk) (4a)

subject to

xk+i+1|k = Ak+ixk+i|k + Bk+iuk+i|k, xk|k = xk, (4b)
[

xk+i+1|k uk+i|k

]T
∈ C, i = 0, · · · ,H − 1, (4c)

xk+H|k ∈ Ek+H = {y ∈ R
n : yT Pk+Hy ≤ α}. (4d)

In (4) the index k + i|k denotes the predicted states
and inputs at the predicted time instant k + i, where
the prediction has been calculated at the current time
instant k. This notation is necessary since the trajectories
predicted at time k in general differ from those predicted
at time k + 1.
The solution to the optimization problem (4) at time k is
the open-loop input trajectory

u?
k = arg min

uk

J(xk, k,uk) (5)

We denote the optimal value of the cost function by

J?(xk, k) := J(xk, k,u?
k). (6)

The control law applied to system (1) is updated at each
time instant k by the repeated solution of the optimization
problem (4), i.e. the applied input is

uk = u?
k|k, (7)

where u?
k|k is the first part of the optimal input se-

quence u?
k.

In the optimization problem above the state at the end of
the prediction horizon xk+H|k is penalized in the cost func-

tion (3) by the terminal penalty term xT
k+H|kPk+Hxk+H|k.

Furthermore, it is forced to lie in the terminal region Ek+H ,
which is an ellipsoid defined by the matrix Pk+H and
the scalar α ∈ R

+. Note that the terminal penalty ma-
trix Pk+H and the terminal region Ek+H are chosen to
be time-varying, in contrast to standard predictive control
schemes, see e.g. Chen and Allgöwer [1998], Fontes [2000],
Mayne et al. [2000], Chen and Ballance [1999], Yu et al.
[2009], Böhm et al. [2008]. If chosen suitably, the time-
varying matrix Pk+H and the scalar α, which define the
terminal penalty term and the terminal region, guaran-
tee closed-loop stability of the considered MPC scheme.
The basic idea of this paper is to exploit the periodic
structure of the system class considered to calculate N
matrices P0, · · · , PN−1 via the solution of linear matrix
inequalities such that closed-loop stability can be estab-
lished. In the open-loop optimal control problem (4) those
matrices are applied periodically, i.e.

Pk+N = Pk ∀ k, (8)

and consequently

Ek+N = Ek ∀ k. (9)

In the following section we derive LMI conditions for
the calculation of the terminal weighting matrices (and
therefore of the time-varying terminal region). It will
be shown that the obtained LMIs are less conservative
than those of comparable approaches, as e.g. Lee et al.
[2005], Yu et al. [2009], thus leading to improved feasibility
properties and a larger terminal region.

3. MAIN RESULT

The calculation of a time-varying terminal region requires
the simultaneous calculation of a time-varying terminal
controller, which in this paper is chosen to be

ũk = Kkxk, (10)

where Kk+N = Kk ∈ R
m×n is a periodically time-varying

feedback matrix. Note that the terminal control law is
never applied to the system, however its existence is re-
quired in the MPC stability proof. The considered terminal
control law (10) renders the input state dependent. There-
fore, the constraint set (2) translates into a periodically
time-varying set depending only on the system state xk

Ck :=

{

xk ∈ R
n :

(

cj + djKk

)

xk ≤ 1, j = 1, · · · , p

}

. (11)

Thus, if at a specific time instant k the state xk lies in the
set Ck, then both state and input constraints are satisfied
at this time instant. Since the terminal region (4d) is



defined as a periodically time-varying ellipsoid Ek, clearly
state and input constraints are satisfied if the considered
ellipsoid lies in the constraint set Ck at the corresponding
time instant. The following lemma provides necessary
and sufficient conditions for the ellipsoid Ek lying in the
polytope Ck.

Lemma 1. The ellipsoid Ek :=
{

y ∈ R
n : yT Pky ≤ α

}

lies
in the constraint set Ck at time instant k if and only if

(cj + djKk)αP−1

k (cj + djKk)T ≤ 1, ∀ j = 1, · · · , p. (12)

Proof 1. The proof can be found in Boyd et al. [1994] and
in Chen and Ballance [1999].

Furthermore, the MPC stability proof will require the
(time-varying) optimal value function J?(xk, k) to be pos-
itive definite. This property is established by the following
lemma.

Lemma 2. The optimal value function J?(x, k) is positive
definite for all x ∈ D, where D is the feasible region of the
optimization problem (4) at the initial time instant k = 0.

Proof 2. To show positive definiteness of the optimal
value function we have to show that

a.) J?(0, k) = 0 ∀ k ≥ 0,
b.) ∃ a time-invariant positive definite function V (x)

such that

V (x) ≤ J?(x, k) ∀ x ∈ D, ∀ k ≥ 0, (13)

see Marquez [2003]. It trivially follows from the definition
of the cost function (3) that property a.) holds. Further-
more, we know from (3) that

xT Qx = V (x) ≤ J?(x, k) ∀ x ∈ D, ∀ k ≥ 0. (14)

Per definition of the set D the optimal value func-
tion J?(x, 0) exists for all x ∈ D. This concludes the proof
under the assumption that J?(x, k) exists for all k > 0 if
it exists for k = 0, i.e. the optimal control problem (4) is
feasible at all time instants k > 0 if it is initially feasible.

Using the results derived in Lemma 1 and Lemma 2,
the following theorem provides LMI conditions which can
be used to calculate the terminal region, the terminal
penalty term and the terminal controller such that the
MPC scheme defined by (3)-(7) is asymptotically stable.

Theorem 1. Suppose that the open-loop optimal control
problem (4) has a feasible solution at initial time k = 0,
and that there exist matrices 0 < Xk = XT

k ∈ R
n×n

and Yk ∈ R
m×n, and a constant α ∈ R

+ such that the
LMIs









Xk XkAT
k + Y T

k BT
k XkQ

1

2 Y T
k R

1

2

AkXk + BkYk Xk+1 0 0

Q
1

2 Xk 0 αI 0

R
1

2 Yk 0 0 αI









≥ 0, (15)

[

1 cjXk + djYk

XkcT
j + Y T

k dT
j Xk

]

≥ 0, (16)

X0 = XN , j = 1, · · · , p,

are satisfied for k = 0, · · · , N − 1. Then with

Pk = X−1

k α (17)

the following holds:

a.) The optimal control problem (4) is feasible at all
future time instants k > 0.

b.) The closed-loop of the MPC scheme defined by (3)-
(7) is asymptotically stable, while input and state
constraints (2) are satisfied.

Proof 3. Let the periodically time-varying feedback ma-
trix defining the terminal controller (10) be

Kk+N = Kk = YkX−1

k . (18)

Substituting Xk and Yk in (15) by P−1

k and Kk according
to (17) and (18), applying the Schur complement, and pre-
and post-multiplying with Pk we obtain that

(AT
k + KT

k BT
k )Pk+1(Ak + BkKk)

−Pk + Q + KT
k RKk ≤ 0 (19)

holds for k = 0, · · · , N − 1. We can conclude from the
periodicity of the system matrices Ak and Bk that if we
apply the matrices Pk and Kk periodically, i.e. Pk+N =
Pk and Kk+N = Kk, inequality (19) is satisfied for all
k ≥ 0. With the terminal control law (10) and the system
dynamics (1) we have that

xT
k+1Pk+1xk+1 + xT

k (Q + KT
k RKk − Pk)xk ≤ 0 (20)

holds for all k ≥ 0. It clearly follows that

xT
k+1Pk+1xk+1 < xT

k Pkxk, ∀ k ≥ 0. (21)

Thus, if for any k ≥ 0 the state xk lies in the ellipsoid

Ek =
{

x ∈ R
n : xT Pkx ≤ α

}

(22)

the state xk+1 lies in the ellipsoid

Ek+1 =
{

x ∈ R
n : xT Pk+1x ≤ α

}

. (23)

Substituting Xk and Yk in (16) by P−1

k and Kk, applying
the Schur complement, pre- and post-multiplying with Pk,
and using the periodicity of Pk and Kk it can be shown
that satisfaction of (16) implies satisfaction of (12) for
all k ≥ 0. Using this it follows from Lemma 1 that Ek ⊂ Ck

for all k ≥ 0. Thus, if at initial time k = 0 the state x0 is
contained in the ellipsoid E0, which lies in the constraint
set C0, the control law (10) assures satisfaction of input
and state constraints for all k ≥ 0.
Since the solution to the optimal control problem (4)
enforces xk+H|k ∈ Ek+H from these considerations in
particular follows that xk+H|k ∈ Ck+H . Therefore, the
terminal control law ũk+H|k = Kk+Hxk+H|k satisfies
the input constraints and the state xk+H+1|k lies in the
ellipsoid Ek+H+1 ⊂ Ck+H+1. Hence, the input sequence

ũk+1 = [u?
k+1|k, · · · , u?

k+H−1|k,Kk+Hxk+H|k] (24)

is a feasible, however generally suboptimal, solution to the
optimization problem (4) at time k + 1, leading to the
suboptimal cost Jk+1 = J(xk+1, k + 1, ũk+1). By induc-
tion it follows that initial feasibility of the optimization
problem (4) implies feasibility at all future time instants,
which concludes the proof of property a.) in the theorem.



To prove property b.) we consider the difference of the
suboptimal cost Jk+1 at time k + 1 and the optimal cost
value J?(xk, k) at time k, which using the definitions of uk

in (5) and ũk+1 in (24) is

Jk+1 − J?
k = −xT

k|kQxk|k − u?T
k|kRu?

k|k

+xT
k+H|k(Q + KT

k+HRKk+H − Pk+H)xk+H|k

+xk+H+1|kPk+H+1xk+H+1|k. (25)

From (20) we know in particular that the inequality

xT
k+H+1|kPk+H+1xk+H+1|k +

xT
k+H|k(Q + KT

k+HRKk+H − Pk+H)xk+H|k ≤ 0 (26)

is satisfied. It follows that

Jk+1 − J?
k ≤ −xT

k|kQxk|k − u?T
k|kRu?

k|k. (27)

Using (4b), (7) and the optimality condition J?
k+1

≤ Jk+1

we obtain

J?
k+1 − J?

k ≤ −xT
k Qxk − uT

k Ruk. (28)

Since J?(xk, k) is a positive definite function, see Lemma 2,
system (1) is asymptotically stable (Marquez [2003]) under
the MPC controller defined in (3)-(7).

Often it is desired to maximize the volume of the terminal
region in order to maximize the feasible region of the con-
sidered MPC scheme, see e.g. Chen and Ballance [1999],
Böhm et al. [2008], Yu et al. [2009]. Since we consider time-
varying ellipsoids as terminal region, one has to decide
which ellipsoid’s volume should be maximized. Since initial
feasibility implies feasibility at all future time instants it
is reasonable to maximize the initial ellipsoid Ek+H , which
is achieved by solving the optimization problem

minimize
α,X0,··· ,XN−1,Y1,··· ,YN−1

−log det(Xk+H) (29)

subject to the LMIs (15) and (16). In the case that the
prediction horizon H is larger than the time period N , one
has to exploit the periodicity of the matrices Xk according
to (17) and (8). It is shown in Boyd et al. [1994] that (29)
is a convex optimization problem.
In Lee et al. [2005] an approach based on similar LMI con-
ditions as in Theorem 1 is derived which also allows for the
calculation of periodically time-varying terminal regions.
However, the approach is developed for linear parameter-
varying systems where the dynamics are approximated
with a PLDI. Thus, applying Lee et al. [2005] to peri-
odically time-varying systems would require to consider
the time-varying system matrices as extreme matrices of
a PLDI formulation. This increases the number of LMIs
to be solved significantly and introduces unnecessary con-
servativeness when compared to the approach presented
here, possibly leading to an infeasible LMI problem. To
apply Lee et al. [2005] to periodic systems would require
to replace the index k of the matrices Ak and Bk in the
LMIs (15) and (16) by a new index i. The LMIs then would
have to hold for all k = 0, · · · , N−1 and all i = 0, · · · , N−1
instead of only for all k = 0, · · · , N − 1 as in this paper.
The approach in Yu et al. [2009] would suffer from similar
problems, since as in Lee et al. [2005] the periodic system

matrices would have to be covered in a conservative PLDI
formulation. Thus, the approach presented in this paper
reduces conservativeness compared to existing approaches
by exploiting explicitly the periodic system dynamics.
The results obtained in Theorem 1 allow the calculation of
a time-varying terminal region and a time-varying terminal
penalty term for the class of linear periodically time-
varying systems as introduced in (1). However, often the
dynamics of the considered control system are nonlinear.
Therefore, in the next section we extend the results ob-
tained in Theorem 1 to cover a more general class of
systems.

4. EXTENSION TO NONLINEAR SYSTEMS

In practical control problems one often has to deal with
nonlinearities in the system description. This motivates us
to extend the results of the previous section to periodically
time-varying systems of the form

xk+1 = fk(xk, uk), (30)

where fk+N = fk describes the periodically time-varying
nonlinear dynamics. To apply LMI techniques as in Sec-
tion 3 we approximate the nonlinear system (30) by a poly-
topic linear differential inclusion (Boyd et al. [1994]). First,
we assume that the dynamics of (30) can be expressed by
a linear parameter-varying system

xk+1 = Ak(θk)xk + Bk(θk)uk. (31)

The system matrices Ak(θk) and Bk(θk) depend on the
time-varying parameter vector θk = [θ1,k, θ2,k, · · · , θq,k] ∈
R

q, which belongs to a polytope P defined by

q
∑

i=1

θi,k = 1, 0 ≤ θi,k ≤ 1. (32)

Clearly, as θk varies inside the polytope P, the matrices of
system (31) vary inside a corresponding polytope Ωk

[Ak(θk) Bk(θk] ∈ Ωk, (33)

which is defined by the convex hull of q local extreme
matrices [Ai,k Bi,k], i = 1, · · · , q,

Ωk := Co
{

[A1,k B1,k], [A2,k B2,k], · · · , [Aq,k Bq,k]
}

.(34)

Therefore, we can write the matrices of system (31) as

Ak(θk) =

q
∑

i=1

θi,kAi,k, Bk(θk) =

q
∑

i=1

θi,kBi,k. (35)

Note that the polytope Ωk is chosen to be time-varying,
which captures the periodic time-variance of the non-
linear function fk = fk+N , i.e. for N nonlinear func-
tions fk one has to find N convex hull representations
as described above. This is an easier task than finding
a single time-invariant convex hull representation for all
functions f0, · · · , fN−1, and the obtained result is less
conservative.

Remark 1. It is not naturally guaranteed that for each
function fk the corresponding convex hull representation
requires the same number q of extreme matrices. However,
for simplicity of notation we assume the same number



of extreme matrices for each of the N convex hull rep-
resentations. The problem of different numbers of extreme
matrices could be simply overcome by introducing (unnec-
essary) matrices lying in the already defined convex hull,
which would lead to LMI conditions that would never be
active and therefore would not lead to more conservative
results. Therefore, the assumption made in this paper is
not limiting.

The following theorem provides LMI conditions for the
calculation of a terminal region and a terminal penalty
term such that the MPC scheme defined by (3)-(7) is
asymptotically stable, where (4b) has to be replaced by
the nonlinear dynamics (30).

Theorem 2. Suppose that the open-loop optimal control
problem (4) has a feasible solution at initial time k = 0,
where (4b) is suitably replaced by (30). Further suppose
that there exist matrices 0 < Xk = XT

k ∈ R
n×n and Yk ∈

R
m×n, and a constant α ∈ R

+ such that the LMIs









Xk XkAT
i,k + Y T

k BT
i,k XkQ

1

2 Y T
k R

1

2

Ai,kXk+ Bi,kYk Xk+1 0 0

Q
1

2 Xk 0 αI 0

R
1

2 Yk 0 0 αI









≥ 0,(36)

[

1 cjXk + djYk

XkcT
j + Y T

k dT
j Xk

]

≥ 0,(37)

X0 = XN , j = 1, · · · , p, i = 1, · · · , q,

are satisfied for k = 0, · · · , N − 1. Then with Pk = X−1

k α
the following holds:

a.) The optimal control problem (4) is feasible at all
future time instants k > 0.

b.) The closed-loop of the MPC scheme defined by (3)-
(7) is asymptotically stable, while input and state
constraints (2) are satisfied.

Proof 4. The proof goes along the lines of the proof of
Theorem 1. Substituting Xk and Yk in (36) as in Theo-
rem 1 by the periodic matrices P−1

k and Kk, applying the
Schur complement and pre- and post-multiplying with Pk

we have

(AT
i,k + KT

k BT
i,k)Pk+1(Ai,k + Bi,kKk)

−Pk + Q + KT
k RKk ≤ 0, (38)

for i = 1, · · · , q, and for all k. Since θi,k ≥ 0 this implies
that the inequality

q
∑

i=1

θi,k

(

(AT
i,k + KT

k BT
i,k)Pk+1(Ai,k + Bi,kKk)

−Pk + Q + KT
k RKk

)

≤ 0 (39)

holds for all k. Using (32) and the definition of Ak(θk)
and Bk(θk) in (35) this results in

(

AT
k (θk) + KT

k BT
k (θk)

)

Pk+1

(

Ak(θk) + Bk(θk)Kk

)

−Pk + Q + KT
k RKk ≤ 0.

With the terminal control law (10) and the system dynam-
ics (31) we finally obtain that

xT
k+1Pk+1xk+1 + xT

k (Q + KT
k RKk − Pk)xk ≤ 0 (40)

holds for all k ≥ 0. This inequality is identical to (20)
in the proof of Theorem 1. Therefore, from this point the
proof can be continued in exactly the same way.

For simplicity, in the following section we provide sim-
ulation results of an example system with linear peri-
odic dynamics as considered in Section 3. However, as
illustrated in Reble et al. [2009] the application of the
nonlinear extensions presented in this section would be
straightforward.

5. SIMULATION RESULTS

To illustrate the results derived in Section 3 we consider an
example system of the form (1) with time period N = 3.
The system is of third order and has two inputs u1

k and u2
k,

i.e. n = 3 and m = 2. It is defined by the matrices

A0 =

[

0.4 0.3 1.0
0.6 0.6 0.6
0.1 0.9 0.1

]

, B0 =

[

0.3 0.3
0.5 1.0
0.4 1.0

]

,

A1 =

[

0.4 0.7 0.8
0.1 1.0 0.1
0.3 0.4 0.8

]

, B1 =

[

0.2 0.6
0.1 0.1
0.3 0.9

]

,

A2 =

[

0.3 0.7 0.3
0.8 0.5 0.3
0.6 0.4 0.7

]

, B2 =

[

0.9 0.0
0.5 0.2
0.3 0.8

]

.

(41)

The initial condition for the system states is given by
x0 = [10 10 5]T . For simplicity, we consider only input
constraints of the form −3 ≤ u1

k ≤ 3 and −4.5 ≤ u2
k ≤

4.5 for all k ≥ 0. Thus, the number of constraints is
p = 4. Since only input constraints are considered, the
state constraint vectors are cj = [0 0 0] ∀j = 1, . . . , 4.
The input constraint vectors are d1 = −d2 = [ 1

3
0] and

d3 = −d4 = [0 2

9
]. As design parameters for the predictive

controller we have chosen

Q =

[

1 0 0
0 1 0
0 0 1

]

, R =

[

5 0
0 5

]

. (42)

Solving the LMIs according to Section 3 we obtain the
matrices

P0 =

[

1.87 0.97 0.52
0.97 2.92 0.65
0.52 0.65 2.13

]

, KT
0 = −

[

0.15 0.28
0.24 0.49
0.10 0.14

]

,

P1 =

[

1.64 1.61 1.32
1.61 6.00 3.18
1.32 3.18 3.78

]

, KT
1 = −

[

0.09 0.24
0.23 0.56
0.18 0.50

]

,

P2 =

[

3.27 1.78 1.45
1.78 2.67 1.21
1.45 1.21 2.17

]

, KT
2 = −

[

0.36 0.23
0.36 0.17
0.24 0.21

]

,

which define the time-varying terminal region, terminal
penalty term and terminal controller. Using these matrices
in the MPC scheme (3)-(7) leads to the simulation results
shown in Figure 1. The figure exemplarily shows the
states x1

k and x3
k as well es the input trajectories u1

k and u2
k,

and illustrates well the effectiveness of the proposed model
predictive control scheme.
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Fig. 1. Simulation results of the proposed model predictive
control scheme.

6. CONCLUSIONS

In this paper we derived an LMI based approach to calcu-
late stabilizing terms of a model predictive control scheme
for the class of periodically time-varying systems. The so-
lution to the obtained LMI conditions delivers periodically
time-varying terminal regions and terminal penalty terms
which render the closed-loop system asymptotically stable.
We showed that the results presented improve existing ap-
proaches since we explicitly consider the periodic nature of
the system dynamics. A simulation example illustrated the
applicability of the proposed approach, however further
research is necessary to apply the results to practical prob-
lems as e.g. to satellite control problems (Psiaki [2001],
Bittanti and Colaneri [2009]).
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F. Allgöwer, editors, Nonlinear Model Predictive Control
- Towards New Challenging Applications, Lecture Notes
in Control and Information Sciences. Springer-Verlag,
2009.


